
1

Are You Still Working on This? An Empirical
Study on Pull Request Abandonment

Zhixing Li, Yue Yu*, Tao Wang, Gang Yin, ShanShan Li, and Huaimin Wang

Abstract—The great success of numerous community-based open source software (OSS) is based on volunteers continuously
submitting contributions, but ensuring sustainability is a persistent challenge in OSS communities. Although the motivations behind and
barriers to OSS contributors’ joining and retention have been extensively studied, the impacts of, reasons for and solutions to
contribution abandonment at the individual level have not been well studied, especially for pull-based development. To bridge this gap,
we present an empirical study on pull request abandonment based on a sizable dataset. We manually examine 321 abandoned pull
requests on GitHub and then quantify the manual observations by surveying 710 OSS developers. We find that while the lack of
integrators’ responsiveness and the lack of contributors’ time and interest remain the main reasons that deter contributors from
participation, limitations during the processes of patch updating and consensus reaching can also cause abandonment. We also show
the significant impacts of pull request abandonment on project management and maintenance. Moreover, we elucidate the strategies
used by project integrators to cope with abandoned pull requests and highlight the need for a practical handover mechanism. We
discuss the actionable suggestions and implications for OSS practitioners and tool builders, which can help to upgrade the
infrastructure and optimize the mechanisms of OSS communities.

Index Terms—Pull Request Abandonment, Pull-based Development, Open Source Software

F

1 INTRODUCTION

The great success of open source software (OSS) is based
on the theory that “many hands make light work” [57], [73].
For a popular community-based OSS project, a large number
of volunteers continuously improve the project quality [52],
[75] by submitting code patches, reporting bugs, and dis-
cussing new features. However, due to the nature of OSS
collaboration (e.g., OSS projects are loosely organized as the
core-periphery structure [16], [17], and many external con-
tributors are motivated by indirect economic benefits [40],
[48]), ensuring sustainability [21] is a persistent challenge in
OSS communities.

Prior work in this area has paid considerable attention
to: i) revealing the motivations behind why developers
make contributions to OSS projects to better recruit and
encourage contributors [9], [30], [40], [41], [58], [75]; ii) un-
covering the barriers and challenges faced by developers
when contributing to OSS projects to assist the onboarding
and participation of developers [15], [19], [29], [64], [66], [74];
and iii) investigating the factors that affect OSS developers’
willingness to remain long-term and established contribu-
tors to decrease the likelihood of developer disengagement
and turnover [41], [43], [47], [54], [59], [78].

In this study, we shed light on OSS contributors’ aban-
donment, focusing on the individual and single level in
pull-based development [23], i.e., every single pull request

• Zhixing Li, Yue Yu, Tao Wang, Gang Yin, and Huaimin Wang are with
the Key Laboratory of Parallel and Distributed Computing, College of
Computer, National University of Defense Technology, Changsha, China.
E-mail: {lizhixing15, yuyue, taowang2005, yingang, hmwang}@nudt.
edu.cn

• ShanShan Li is with the College of Computer, National University of
Defense Technology, Changsha, China. E-mail: shanshanli@nudt.edu.cn

*Corresponding author: Yue Yu, yuyue@nudt.edu.cn

that is unfinished but abandoned by the author. We clarify
our research motivation as follows. The pull request mecha-
nism [23], [71] provides a synthesized collaboration environ-
ment for OSS distributed development by coupling the code
repository, modern issue tracker, code review and automatic
tools of DevOps. This has unprecedentedly lowered the
barrier to entry for potential contributors and simplified the
collaborative development process compared to traditional
patch-based methods [80]. It is interesting to understand
the reasons why there are considerable unfinished pull
requests whose contributors have spent time programming,
submitting and discussing at the beginning but walk away,
leaving their contributions abandoned. As project integra-
tors mentioned in our survey, “We see quite a lot of valu-
able contributions abandoned by authors, just applying a few
demanded changes might make their pull requests good enough
to be eventually accepted” [SC224]. Furthermore, pull request
abandonment is significant for the health of OSS projects
and requires extra project maintenance efforts. Two repre-
sentative quotes from our survey respondents indicate this:
“Opening a PR and walking away is bad form” [SI3], and “It’s
frustrating to see a bug almost fixed and then abandoned” [SI6].
A more complete picture of pull request abandonment can
help OSS communities obtain great benefits from designing
appropriate strategies to overcome avoidable abandonment,
building more efficient tools for distributed collaboration,
and helping individual participants understand the mindset
of abandonment, and find the best ways to contribute.

To address this goal, we conducted a mixed-methods
empirical study. We first manually examined the review
discussion of 321 abandoned pull requests collected from
5 popular projects hosted on GitHub, which allowed us
to obtain a preliminary understanding from an observer’s
perspective based on historic trace data. Then, we confirmed

2

and quantified the manual observation results by large-
scale surveys, which received 619 and 91 answers from
contributors and integrators, respectively. By analyzing all
these data, we answered three research questions:

RQ1. Why do contributors abandon their pull requests?
We have identified 12 main reasons for pull request

abandonment related to the limitations of the collaboration
process, personal issues of contributors, and implementa-
tions of pull requests per se. In addition to the lack of respon-
siveness from integrators and lack of time from contributors,
we observed surprising reasons concerning the pull request
updating process, consensus-reaching discussion, and effort
investment. Our findings can help OSS communities clarify
responsibility, optimize the collaboration process, and focus
their efforts on avoidable reasons to prevent abandonment.

RQ2. What are the impacts of pull request abandonment?
We found that the top-ranked impacts primarily intro-

duce extra maintenance burden on integrators, e.g., clutter-
ing pull request list. Abandonment can also have cascading
effects on the community due to technical dependencies
among artifacts and common interests among developers.
By learning the specific impacts, new mechanisms and tools
can be developed to mitigate the undesirable impacts.

RQ3. How do integrators cope with abandoned pull requests?
We have found several strategies integrators used to pro-

mote the completion of abandoned pull requests. However,
we also uncovered a novel need for a handover mechanism
in social coding platforms, since approximately two-thirds
of integrators simply closed abandoned pull requests al-
though most contributors expressed that they were willing
to pick up pull requests abandoned by others. Based on our
findings, tool builders can be informed to better fulfill de-
velopers’ information needs and functionality requirements,
which are not currently met.

The contributions of the paper are summarized as fol-
lows:

• To the best of our knowledge, this is the first in-depth
study that systematically explores the phenomenon of
pull request abandonment in OSS projects.

• We provide qualitative information and quantitative as-
sessment about the reasons, impacts, and coping strate-
gies for pull request abandonment based on manual
observation and surveys.

• We propose actionable recommendations and impli-
cations that OSS practitioners and tool builders can
take to increase the potential to prevent contributors’
abandonment and foster the completion of abandoned
pull requests, thus improving the overall development
efficiency.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the background of abandoned pull requests
and related work. Section 3 describes the methodology,
and Section 4 reports the results with respect to our three
research questions. Section 5 presents our main findings
and their implications. Section 6 discusses the threats to the
validity of our study. The last section concludes the paper.

2 BACKGROUND AND RELATED WORK

This section presents the background of abandoned pull
requests and points out the main studies in the field.

2.1 Abandoned pull requests

Figure 1 illustrates the review process of an individual pull
request. When a new pull request is submitted by a contrib-
utor, project integrators are responsible for evaluating the
changes within the pull request. If integrators do not like
the proposed changes, they reject the pull request. However,
if integrators are satisfied with the pull request, they would
accept it. Nevertheless, pull requests are rarely perfect and
ready to merge when submitted. Pull requests are usually
iteratively evaluated and updated, until a satisfactory so-
lution has emerged. In each round of review, integrators
evaluate the contribution quality and ask the author to
fix the identified defects. If the author updates the pull
request by submitting new changes as requested, the pull
request awaits for another round of review. However, some
contributors might vanish without addressing integrators’
comments, leaving their pull requests abandoned.

accept

Under
evaluation

merged rejected

request changes

submit new changes

submit

reject

abandoned

abandon

Waiting for
updates

Integrators' actionContributors' actionPull request statusLEGEND

Fig. 1: Review process of an individual pull request.

As an example, Figure 2 describes an abandoned pull
request from the project Rails. Ê The author created a com-
mit and submitted a pull request for review. Ë Developer
dvpr1 reviewed the code and suggested changes. Then the
author submitted a new commit addressing the suggestion
and pinged integrators to review the code again. Ì At
almost the same time, developer dvpr2 proposed another
suggestion that was approved by the other two reviewers.
Í However, the author became inactive in the next few
weeks, leading integrators to discuss the status and value
of the pull request. Î For another few months, the author
still remained inactive. Developer dvpr3 posted a prompting
comment and tried to convince the author of the benefit
of the requested changes. The author was also asked to
rebase the pull request. Ï Unfortunately, the author was
still inactive in the next few weeks, and integrators finally
closed the pull request.

The fact that the review of the pull request took 5
months, during which 8 developers participated in the dis-
cussion generating 12 comments and some kind of testing
method was performed to test the code, reveals that pull
request abandonment can be unfortunate since valuable
human and material resources have been utilized. Moreover,
the contributor herself/himself also invested effort and time
in creating, submitting and updating the pull request. This
motivates us to investigate the reasons behind pull request
abandonment and seek inspiration to prevent avoidable
abandonment.

3

6

1

2

3

5

4

Apr. 4, 2012

Apr. 4-5, 2012

Apr. 4-8, 2012

May 2, 2012

Aug. 7, 2012

Sep. 1, 2012

Add option to config_accessor to allow a default value.

+
+ config[name] = options[:default] if options[:default]

You probably want to do if	options.key?(:default) and also
ensure a value can set to false Ping.

I've changed the assignment
of default values as per your
suggestion. Thanks!

I wonder if the api should b similar to cattr_accessor and take a block instead, wdyt?

I'm with @dvpr2. We should make the API like the cattr_accessor

@dvpr2 @dvpr3

@dvpr2 the tests all pass for this patch; Though in looking at it again, I'm wondering if we
don't want this patch

Well this can be a valuable patch, but we need to change it to use the same API that
cattr_accessor

Ping, Last comment on this was 4 months ago if we change the interface to
so you can do something lie this:

cattr_accessor

class person
config_accessor :hair_colors do

[:brown, :black, : blone, : red]
end

end

Push an update and let me know i'll be happy to take a look at it let me know it if you have
implementation questions. If you're not going to finish this PR let us know.

This will need a rebase a well.

Since there is no activity here, can we just close this? If someone needs that, they can open
new pull request.

Agreed.

Fig. 2: An example abandoned pull request.

2.2 Pull request nonacceptance

Gousios et al. [23] manually examined 350 pull requests
to explore the reasons for closing a pull request without
merging. They observed that far more pull requests are
unmerged due to issues related to the distributed devel-
opment process rather than technical issues. Steinmacher et
al. [65] presented a study regarding quasi-contributors’ per-
ceptions of why their pull requests were not accepted. They
found that duplicates and vision mismatch were the most
common reasons mentioned by contributors. Additionally,
they reported that developers’ abandonment (i.e., “Lack of
experience/commitment from quasi-contributors” in their study)
was cited by some developers as the reason for pull request
nonacceptance. Past studies have also extensively investi-
gated the factors affecting integrators’ decisions to accept
or reject a pull request. For example, Gousios et al. [23]
showed that the merge decision is mainly influenced by
modification hotness. Tsay et al. [68] presented that project
integrators examine both technical and social factors, and
particularly contributors’ prior interaction in the project
significantly affects pull request acceptance. Recent research
has extended previous work by considering the effects of ad-
ditional factors such as personality traits [34], geographical
location [55], [56], employment [39], [51] and gender [67].

The above research studied pull request nonacceptance
in general. However, although some of the findings showed
that contributors’ abandonment is one of the reasons for pull
request nonacceptance, to the best of our knowledge, no
prior work in the literature has studied this topic in detail.

2.3 OSS projects sustainability

The sustainability of OSS projects has attracted great interest
from researchers. Previous studies have investigated the
motivations behind and barriers to developers’ joining and
retention in OSS projects.
Motivations to make OSS contributions. Developers’ mo-
tivations to contribute to OSS projects have been extensively
studied by prior research [30], [40], [75]. The common
motivations include the joy of programming, the identifi-
cation with a community, career advancement and learning.
Furthermore, Roberts et al. [58] investigated the interrela-
tionships between the motivations of OSS developers. They
found that developers’ motivations are not always comple-
mentary. Lee et al. [41] particularly studied the motivations
of one time contributors. They found that the most common
motivation is to fix a bug affecting developers. Similarly,
Pinto et al. [52] showed that “scratch their own itch” was a
highly mentioned motivation by casual contributors. Bonac-
corsi et al. [9] studied the difference in motivations between
individual developers and firms and observed that firms are
more motivated by economic and technological reasons.
Barriers to participation in OSS projects. Steinmacher et
al. [66] analyzed newcomers’ first interactions on a project
and found that both the authors and types of received an-
swers affected newcomers’ onboarding. Furthermore, they
defined a conceptual model composed of 58 barriers [63]
that hinder newcomers’ first contribution and designed a
portal [64] to help newcomers overcome these barriers.
Researchers have also investigated the effect of mentor-
ing on onboarding newcomers. For example, the study by
Fagerholm et al. [19] showed that mentoring increases the
chance of developers’ active participation. Canfora et al. [15]
proposed Yoda, a system that identifies and recommends
suitable mentors to support newcomers joining a project.
In the pull-based model specifically, Gousios et al. [24]
surveyed developers about the challenges they faced, and
found that the most commonly reported challenge is the
lack of responsiveness from project integrators.
Developers’ retention in OSS projects. A study by Zhou
et al. [78] showed that developers’ willingness and par-
ticipation environment have a significant influence on the
probability of developers becoming long-term contributors.
Schilling et al. [59] revealed that the level of development
experience and conversational knowledge significantly af-
fect developers’ retention in OSS projects. A study by Lin
et al. [43] showed that developers who contribute earlier,
mainly modify instead of creating files, and mainly write
code rather than maintaining documentation have a higher
chance of retention. Lee et al. [41] found that most of the
one-time contributors simply shared the fixes to the bugs
impeding their work and had no intention to become long-
term contributors. They also observed that time and pro-
cess are the main reasons that prevent contributors from
submitting additional patches to a project. Qiu et al. [54]
studied the effect of social capital on developers’ participa-
tion, and found that collaborating with familiar developers
is generally beneficial for prolonged engagement. Miller et
al. [47] studied why established contributors disengage from
OSS projects. Their survey with disengaged contributors
showed that occupational problems, e.g., changing to a new

4

job that does not support OSS development work, are the
most frequent reasons. Iaffaldano et al. [33] conducted an
interview with OSS developers to explore what drives them
to become temporarily or permanently inactive in a project.
The reported reasons were personal (e.g., life events) or
project related (e.g., role change and changes in the project).

Existing research has broadly studied each stage of OSS
developers’ lifecycle. Some of this research has particularly
explored the reasons for developers’ disengagement in OSS
projects. However, little is known about developers’ dis-
engagement in individual contributions. Developers who
leave a project might have never abandoned any pull re-
quest, while developers who have abandoned a pull request
might continue to contribute to a project. For OSS projects to
sustain, it is important not only to attract and retain devel-
opers to make long-term contributions but also to motivate
developers to complete each submitted pull request. In this
paper, we therefore address this knowledge gap by focusing
on pull request abandonment.

3 RESEARCH METHODOLOGY

Inspired by prior established guidelines [7], [31], [44], [45],
to answer our research questions, we conducted a mixed-
methods empirical study using both qualitative and quan-
titative approaches. At a high level, our research method-
ology comprised two components, manual observation and
online surveys, as shown in Figure 3. First, we conducted an
exploratory qualitative observation by manually examining
the public trace data stored in GitHub repositories. This
manual observation aimed to obtain a preliminary and
broad understanding. We built a taxonomy of the reasons,
impacts, and coping strategies for pull request abandon-
ment. Then, the preliminary findings were used as input for
surveys which helped us quantify the manual observation
results. Combining the results of the observation and the
surveys, we derived our main findings.

3.1 Manual observation
The manual observation was based on five popular OSS
projects. We first identified a collection of abandoned pull
requests through a semi-automatic method from the five
projects. Then, by analyzing pull request discussions, we
aimed to develop preliminary answers to the three research
questions.

3.1.1 Studied projects
In this paper, we accessed five OSS projects hosted on
GitHub, i.e., Rails, Kubernetes, Node.js, Cocos2d-x,
and Rust. We selected these projects for multiple reasons.
First, all five projects are collaboratively developed, follow-
ing the pull request model and using the integrated code
review tool in GitHub. Second, the projects are popular
and mature, with years of development history, gaining
widespread community attention. Third, they are diverse in
terms of programming language and application domain.
Table 1 presents the overview of the studied projects. The
number of stars and the number of pull requests are proxies
for project popularity [10]. For each of the studied projects,
we collected all pull requests from the project creation date
to the examination date (August 15, 2019) as well as review
discussions on pull requests via the GitHub API [2].

TABLE 1: Overview of our studied projects.

Projects Language Domain #Star #PR

Rails Ruby Web framework 36,330 13,820
Kubernetes Go Container management 24,965 29,729
Node.js JS JavaScript runtime 37,030 18,409
Cocos2d-x C++ Game engine 10,550 11,915
Rust Rust Programming language 22,595 47,522

3.1.2 Identification of abandoned pull requests

Abandoned pull requests are closed but unfinished pull
requests in which the authors did not address integrators’
change requests. However, GitHub does not precisely mark
abandoned pull requests with a specific status value such
as open, closed, or merged. One cannot directly and easily
retrieve abandoned pull requests by setting selection crite-
ria when calling the GitHub API or searching any public
dataset such as GHTorrent [22]. Consequently, we chose a
heuristics-based method.

According to the interaction between integrators and
the pul request author after the change request, aban-
doned pull requests can be classified into four categories:
i) the author spontaneously reported her/his abandonment
decision, ii) the author remained inactive and integrators
directly closed the pull request, iii) the author remained
inactive and then reported the abandonment decision when
pinged by integrators, and iv) the author consistently re-
mained inactive even when pinged by integrators and the
pull request was ultimately closed. We can note that pull
requests of the last three cases experience an “inactive”
period that tends to cause a pull request to receive com-
ments concerning contributor responsiveness, e.g., “closing
due to inactivity” and “any update on this??”. These comments
usually contain representative keywords that are useful to
guide the identification of abandoned pull requests. Our
preliminary observation also showed that pull requests of
case i) were rare. To this end, we first automatically identi-
fied candidates for abandoned pull requests by examining
the presence of unresponsiveness-related keywords in re-
view comments and then manually verified the identified
candidates.
Automatic identification. First, we preprocessed the text of
a comment by removing code snippets and hyperlinks and
converting all the words to lower case. Then, we determined
whether any of the following unresponsiveness-related key-
words was contained in the processed comment.

{ lack of response, lack of activity, lack
of feedback, inactive, inactivity, no response,
no reply, no activity, no feedback, any update,
any news, any activity, unfinished, uncompleted,
unresponsiveness }

Initially, the keyword list only contained several items
extracted from a set of known abandoned pull requests.
Subsequently, it was iteratively extended when new repre-
sentative keywords were found from the newly identified
abandoned pull requests. If a comment was successfully
matched with at least one of the keywords, the pull request
to which it belonged was marked as a candidate for an
abandoned pull request. In total, we automatically identified

5

Online survey

Manual observation

Participant recruitmentSurvey design Response analysis

Voting
ratios

Question type
- Multiple choice; open ended

Distribution method:
- Online; email invitation

Pilot respondents:
- 19 contributors
- 13 integrators

Count the
votes

Taxonomies of
reasons, impacts
and coping
strategies

Identifying abandoned Pull requests Data analysisSelecting projects

Automatic identification

Manual verification Card sorting

321 abandoned Pull requests5 projects on GitHub:
- Pull-based development
- Popular and mature
- Diverse

Execution:
- Pilot; Full-scale

Full-scale respondents:
- 600 contributors
- 78 integrators

Pilot stage:
- 5 studied projects
- 241 contributors
- 191 integrators

Full-scale stage:
- 100 popular projects
- 5858 contributors
- 735 integrators

Analyze the
comments

Analyze the
feedback

Fig. 3: Overview of methodology design.

1,125 candidates.
Manual verification. Unresponsiveness does not always
indicate abandonment, i.e., the heuristics used in automatic
identification can introduce false positives. For example,
inactive authors might respond after they were pinged by
integrators. Moreover, the keywords might have been used
in a different context other than contributor responsiveness,
e.g., the keyword inactive can be used to describe the state
of a remote service. Currently, there is not a feasible way
to increase precision without decreasing recall, i.e., filtering
out as many false positives as possible without mistakenly
removing true positives simultaneously. Therefore, we man-
ually examined each candidate and verified whether it was
really abandoned by the author. At the end of this process,
we obtained a total of 321 abandoned pull requests.

3.1.3 Data analysis
For each abandoned pull request, we went through its
review discussion in full and extracted i) the author’s ex-
planation for why s/he could not finish the pull request
(e.g., “I am very sorry, but I am not interested in this topic
anymore” [D30]), and ii) integrators’ comments and activities
around the pull request abandonment (e.g., “This had no
followup after a review. Is there anyone that wants to help on
this?” [D75]). The extracted data were qualitatively analyzed
by following the card sorting procedures [62], [81] to build
taxonomies of the reasons, impacts and coping strategies
for pull request abandonment. Taking as an example of
the emergence of the taxonomy of abandonment reasons,
our analysis process proceeded as follows (the other two
taxonomies were established following the same process).
Preparation: The first three authors were assigned to con-
duct the card sorting task. They reviewed all the explanation
comments and created a “card” for each of them. The cards
were created by selecting the key phrases and sentences
from the comments.

Coding: Instead of coding the cards separately in parallel
and checking the consistency of the coding results, the three
authors coded the cards together [8], [28]. Agreement was
negotiated along the way [14], i.e., when the coders had dif-
ferent opinions, they interrupted the process to discuss the
discrepancy before continuing on. As we had no predefined
categories, the coders used an open coding approach [81]
to analyze the cards, whereby new themes emerged during
the coding process. By reading the cards, they grouped
them into meaningful categories; each category had a theme
describing the reason for abandonment. Although the card
sort reached saturation early (i.e., when no new information
was gained from new data), we decided to code all cards to
increase the completeness of the discovered set of themes.
Finally, after all the cards were analyzed, a taxonomy of
reasons for pull request abandonment was established.
Validation: To minimize the subjectivity of the three coders,
all authors discussed the taxonomy for conceptual val-
idation and checked its consistency with the raw data.
This discussion refined the taxonomy by reorganizing some
categories and rewording the names of some categories,
ensuring that the taxonomy was clear and understandable
without any misunderstanding. Additionally, to further val-
idate the taxonomy with respect to project popularity, we
performed a closed card sorting on additional data collected
from 20 less-popular projects [5]. Finally, no new themes
emerged in the closed sort.

3.2 Survey

In this section, we introduce the design, participant recruit-
ment, and response analysis of the surveys.

3.2.1 Survey design
Since pull request contributors and project integrators are
involved in different aspects of pull request abandonment,

6

we designed two different surveys that can be found on-
line [6]. The survey for contributors was mainly for aban-
donment reasons, while the survey for project integrators
was mainly for the impacts and coping strategies of aban-
donment. Both surveys started with an introduction to the
research background and purpose. The questions in the
surveys consisted of two parts: i) demographic questions
that were designed to obtain the participants’ role, experi-
ence and work practice in OSS development, and ii) main
questions that were designed to quantify the insights that
we obtained from manual observation. All the questions
were multiple-choice questions, most of which included an
optional “Other” text field to allow survey participants to
provide additional answers that we did not offer. The pre-
defined answers to demographic questions were inspired
by prior research [24], [25], and the predefined answers to
the main questions were set according to the manual obser-
vation findings. Finally, we asked the participants an open-
ended question to allow them to freely provide feedback
on anything that they thought might help us understand
the problem of pull request abandonment. Before deploying
the surveys on SurveyMonkey [4], one of the most famous
platforms used for online surveys, we discussed them with
software engineering researchers with experience in OSS
and survey design to ensure that the questions were clear
and appropriate.

In addition, each survey was conducted in two rounds: i)
a pilot stage that targeted a limited number of participants
in order to clarify our questions and enrich the emerging
themes that we could further validate, and ii) a full-scale
stage that targeted a broader population in order to vote on
answers to each question.

3.2.2 Participant recruitment
In the pilot stages, we surveyed developers from the five
projects studied in the manual observation. We targeted
contributors who submitted abandoned pull requests, and
project integrators who reviewed abandoned pull requests,
respectively. In the full-scale surveys, we wanted to inves-
tigate how frequently the identified themes occurred in a
broader populations. To this end, we surveyed developers
coming from more projects. We first obtained the list of the
top 1,000 popular projects hosted on GitHub, which had
the most number of stars. Then, we randomly selected 100
projects from them, which were software projects (identi-
fied by programming language) and used the pull-based
development model. From each of the selected projects,
we selected the 100 most recent closed pull requests. The
authors of selected pull requests and project integrators who
reviewed these pull requests were selected as candidate
participants. For our sample, we targeted developers who
were more likely to have fresh experience with pull request
abandonment.

We obtained the email addresses of candidate partici-
pants by analyzing their GitHub profile pages and commit
logs. Duplicate developers were removed by comparing
email addresses and user names. In this way, we iden-
tified 432 individuals in the pilot surveys, including 241
contributors and 191 integrators, and 6,593 individuals in
the full-scale surveys, including 5,858 contributors and 735
integrators. Finally, the surveys were published online and

the web addresses were sent to target participants via email.
The invitation message included the number of questions
and the estimated time required to complete the survey. All
surveys run for two weeks.

3.2.3 Responses and analysis
In the pilot surveys (December 20, 2019 - January 3, 2020),
we successfully sent 407 invitations and got 32 responses
(7.9% response rate), including 19 from contributors and
13 from integrators. Based on the participants’ feedback,
we improved the questionnaires to be used in the full-
scale surveys by adding specific options to two yes/no
questions, supplementing the options set to two questions,
and rewording several questions.

In the full-scale surveys (January 14-28, 2020), we suc-
cessfully sent 6,114 invitations and got 678 responses in-
cluding 600 from contributors and 78 from integrators, for
a total response rate of 11.1%, which is similar to response
rates reported by prior software engineering research [24],
[49], [82]. For each multiple-choice question, we analyzed
its responses in two ways. First, we counted the votes on
each of the predefined answer options and computed the
voting ratios of each option. Second, we used the closed
coding method [81] to classify the textual replies of the
“Other” field, if any, into its corresponding taxonomies. If
new themes emerged, they were integrated into the existing
taxonomy. For the last open-ended questions, we collected
meaningful replies and qualitatively analyzed the text con-
tent.

When analyzing the quantitative data regarding demo-
graphic information from the full-scale surveys, we found
that the majority of our respondents were industry devel-
opers, and more than half of them had over three years of
OSS development experience. We also found that one third
of contributors submitted more than three pull requests per
month, and approximately half of the integrators managed
more than three projects.

TABLE 2: Demographic information of survey respondents.

Question Contributors Integrators

Q1. How would you best
describe yourself?

Industry Dev.: 66%
Student: 17%

Independent Dev.: 10%
Academic: 4%

Industry Dev.: 81%
Student: 5%

Independent Dev.: 5%
Academic: 5%

Q2. OSS development ex-
perience in year?

<1: 15%; 1-3: 30%
3-5: 18%; >5: 33%

<1: 7%; 1-3: 24%
3-5: 20%; >5: 49%

Q3. Average number of PRs
per month? (contributors)

Not sure: 25%; 1-3: 42%
3-5: 10%; >5: 22%

-

Q3. Number of maintained
OSS projects? (integrators) -

1-3: 55%; 3-5: 22%
5-10: 8%; >10: 13%

4 RESEARCH RESULTS

In this section, we present our findings from the manual
observation. We also report the frequency distributions of
answers collected from the full-scale surveys. Representa-
tive quotes are presented to support the findings. The source
of each quote is noted in square brackets: [Dx] refers to dis-
cussion comments from trace data, and [SCx] and [SIx] refer
to survey comments from contributors and integrators. The
content is organized around our three research questions.

7

4.1 RQ1: Why do contributors abandon their pull re-
quests?

As shown in Table 3, we identified 12 main reasons for pull
request abandonment at three different aspects, i.e., process
and social limitations during collaboration, personal reasons of
contributors, and implementations of pull requests per se. Rea-
sons R1-R11 were identified in the manual observation,
and reason R12 was added from the pilot survey with
contributors. Table 3 also lists the frequency of reasons voted
by respondents in the full-scale survey with contributors.
Note that the total frequency is greater than 100% because
survey respondents may have selected more than one reason
in their answers. In the following, we analyze and discuss
each of those reasons in detail.

TABLE 3: Reasons why contributors abandon their pull
requests.

Reason Aspect Votes(%)

R1 Lack of answer from integrators Process 42.4
R2 Lack of time Personal 36.6
R3 Pull request is obsolete Pull request 32.8
R4 Not treated seriously by integrators Process 28.6
R5 Inadequate community demand Pull request 22.8
R6 Lack of interest Personal 22.3
R7 Lack of knowledge about the re-
quested changes Personal 20.0

R8 Integrators do not reach a consensus Process 17.7
R9 Tasks of higher priority Personal 15.8
R10 It requires more effort than antici-
pated Pull request 15.5

R11 Disagree with integrators’ opinions Process 13.8
R12 Tedious process of updating the
pull request Process 13.4

Other - - - 1.2

A) Process-related reasons.
R1 Lack of answer from integrators. 42.4% of contributors

cited a lack of answers from integrators as a reason for their
abandonment. Contributors might ask for confirmation of
the change detail (e.g., “What do you mean by ‘type in code”’
[D18]) or approval of the following work (e.g., “I think I need
another core committer to champion this effort or I’m afraid it’ll
code-rot again” [D51]). Waiting for integrators’ answers is a
blocking step for contributors. If contributors do not receive
a reply, they might move away (e.g., “in example trying to get
responses from [some OSS project] is frequently like pulling teeth.
It has turned me off to working with them” [SC533]).
R4 Not treated seriously by integrators. 28.6% of respon-

dents reported that they walked away because they were
not treated seriously by integrators. For instance, a typical
response has clearly pointed out that “More than once, the
feedback from reviewers took months.” [SC299]. Additionally,
one respondent declared that he became very upset after
several times of re-basing requests without receiving any
constructive comment (e.g., “I’ve re-based the PR three times
already. I’ve brought it to your attention several times. I’ve re-
ceived no direction on what’s hold this up.” [D70]). Contributors
also suggested that the long latency in waiting for the first
review comment demotivated them from replying back (e.g.,

“The longer the period between submission and first interaction
with reviewer, the more likely I am to abandon if the reviewer
requests changes” [SC617]).
R8 Integrators do not reach a consensus. 17.7% of con-

tributors abandoned their pull requests due to the lack of
consensus among integrators. Sometimes, it can be fairly
straightforward for reviewers to reach an agreement on
how a pull request should be improved. However, in some
cases where more than one solution is available and each
one has its advantages and disadvantages, the disagreement
among integrators arises during the review process. The
extended discussions and inconsistent requirements might
hinder contributors’ patience in updating their pull requests
(e.g., “I would just need someone with the authority to make the
decision which approach (using usable size or going with next
pot) to go forward with” [D61]).
R11 Disagree with integrators’ opinions. 13.8% of respon-

dents cited this reason. Contributors may be far from the
direction that project integrators want to take due to their
different ideas and visions [32]. In some cases, integrators
thought some changes would be necessary to perfect the
pull request, while contributors disagreed (e.g., “I’m looking
into that now. The issue that we ... which is basically a nop
so I don’t think there is any cleanup to do..” [D64]). A prior
study [25] reported that it is difficult for integrators to ask
for more work from contributors, let alone when contribu-
tors disagree with them.
R12 Tedious process of updating the pull request. To

update a pull request, contributors need to amend existing
commits or add new commits and then push the updated
branch to GitHub. If other developers have changed the
master branch, contributors are expected to rebase their
local branch on top of the latest changes and deal with
the conflicts, if any. Sometimes, contributors may be asked
to squash commits together to cut out the noise in the
revision history. 13.4% of contributors complained about the
tedious process of updating the pull request. Most of them
believed that the tedious updating process does not make
it cost-effective to carry out trivial changes, e.g., removing
extra space. Others suggested that the git facilities used in
the updating process might be sufficiently difficult to deter
some inexperienced developers from continuing, especially
in regard to newcomers.
B) Personal reasons.
R2 Lack of time. 36.6% of respondents stated that they

did not address the requested changes because they had
no time to make additional OSS contributions. Many OSS
contributors are driven by enjoyment-based intrinsic moti-
vations [40], [41], [52], instead of real payment. In our study,
we found that abandoners’ time might be occupied by a
full-time job (e.g., “Sadly with my current job i don’t really have
enough time to work on this” [D41]), school tasks (e.g., “little
bussy with my move and starting my PhD, [someone] was going
to rebase this” [D39]), etc.
R6 Lack of interest. Lack of interest as a reason was

cited by 22.3% of respondents. Interest is crucial to keep
OSS developers contributing since many of them are vol-
unteer contributors. If contributors only maintain a shallow
relationship with a project, particularly for newcomers and
casual contributors to an OSS project, their interests might

8

fade when their pull requests suffer from an unexpected or
overly long review interaction (e.g., “I am very sorry, but I am
not interested in this topic anymore.” [D30]).

R7 Lack of knowledge about the requested changes. 20.0%
of respondents abandoned their pull requests because they
lacked the necessary domain knowledge and programming
skills to carry out the requested changes (e.g., “I don’t think
I’m familiar enough with the rustc codebase to go through and
audit all the uses of :? vs . I’d be okay with closing this” [D44]).
Although knowledge transfer [7] and mentoring [78] are
common on modern social coding sites, some contributors,
especially casual contributors, appeared unwilling to learn
the required knowledge.

R9 Tasks of higher priority. Developers might work on
multiple OSS tasks during a specific period to increase their
productivity. Tasks can be scheduled and switched accord-
ing to their priorities. Task-switching, however, comes at a
cost [70]. Developers need to recall the goal and reconstruct
the context to switch to another task [11], which might
require considerable energy and significantly hinder the cur-
rent work status. Consequently, 15.8% of respondents said
that concentrating on current work was their first priority
and they had to give up the pull request (e.g., “Hey, sorry
about the delay. Regrettably things keep coming up that are higher
priority than this” [D64]).

C) Pull request-related reasons.

R3 Pull request is obsolete. 32.8% of respondents ex-
plained that their pull requests were no longer required or
applicable. This reason includes cases in which a similar
pull request was submitted and accepted (e.g., “Someone else
submitted a pull request that fixed the same issue” [SC299]).
In other cases, the problem disappeared because codes of
popular projects can be frequently changed and become out-
dated (e.g., “becomes unnecessary with arrival of ES modules/v8
devtools progress” [D62]).

R5 Inadequate community demand. 22.8% of contributors
abandoned their pull requests because they did not see
enough community demand. Other developers’ approval of
the relevance and value of pull requests is an important
motivation for contributors to continually improve and
complete their work [24], [25]. If contributors do not feel
obvious and strong desire for their pull requests, they are
less likely to perform the requested changes because they
conjecture that their work would ultimately be rejected due
to a lack of community demand (e.g., “it seems like reviewers
are not interested in the feature I have proposed” [SC267]).

R10 It requires more effort than anticipated. 15.5% of
respondents indicated that they walked away because the
required changes exceeded the effort they planed to devote.
In some cases, the pull request turned out to be much more
complicated than anticipated and contributors did not want
to spend more time (e.g., “it was taking too much of my time”
[SC144]). In other cases, contributors just submitted a drive-
by pull request, e.g., they implemented a feature for their
personal needs and sent it back to the community. At the
project level, integrators asked contributors to generalize
their solutions to cover a wider range of cases. However,
contributors were unwilling to go through the effort of
performing the requested changes (e.g., “I’m happy to provide

an initial technical fix that may be limited in scope. But the
projects need to do their own work” [SC523]).

D) Other reasons.
We also collected several one-off responses from the

“Other” field, that did not fit in the above categories.
The mentioned reasons include missing GitHub notifica-
tion, strange and irrelevant test failure, project failure, and
inefficient communication mechanisms. Interestingly, one
contributor said the abandonment was due to the lack of
financial incentives.

RQ1: We identified 12 main reasons for pull request abandon-
ment. Reasons related to the collaboration process are gener-
ally mentioned by surveyed contributors. The most common
reasons were the lack of answers from integrators and the
lack of time from contributors. Interestingly, tediousness in
performing the updating process, tardiness in reaching con-
sensus on change direction, and more effort than anticipated
to get patches accepted can also cause abandonment, although
relatively uncommonly.

4.2 RQ2: What are the impacts of pull request aban-
donment?

Table 4 shows the 7 impacts of pull request abandonment.
Impacts I2-I7 were identified in the manual observation,
and I1 was added from the pilot survey with integrators.
The frequency of impacts gathered from the full-scale sur-
vey with integrators is also listed in the table. The remainder
of this section discusses each of these impacts in detail.

TABLE 4: Impacts of pull request abandonment.

Impact Votes (%)

I1 Cluttered pull request list 64.0
I2 Wasted review effort 62.7
I3 Additional attention for more careful close 57.3
I4 Delayed landing of inter-dependent pull requests 29.3
I5 Duplicate pull requests 26.7
I6 Disordered milestone 18.7
I7 Bad impression 10.2

I1 Cluttered pull request list. The review duration of
pull requests can vary from days to months [77]. On busy
projects, the volume of incoming pull requests can be large,
leading to many open pull requests being reviewed simul-
taneously. Contributors who abandon pull requests without
leaving clear statements will clutter the pull request list. This
creates extra work for integrators who have to check on each
of the open pull requests for recent progress (e.g., “It’s hard
to keep track of things being done (we have 700 open PRs on
sklearn) [SI83]”).
I2 Wasted review effort. Review effort spent on abandoned
pull requests is also a concern for integrators. In an OSS
project, the number of integrators is usually small [41].
Integrators of popular projects can be very busy in handling
numerous tasks, e.g., triaging issues and answering ques-
tions. In addition, code review is a complicated process that
requires integrators to invest significant effort and time [12].

9

If a pull request is finally abandoned by the author, integra-
tors can feel disappointed with the wasted effort (e.g., “lost
review time that could have been invested in reviewing other PRs
and/or writing my own patches” [SI47])
I3 Additional attention for more careful close. For inte-

grators, it is not always safe to immediately close inactive
pull requests because contributors may only be temporarily
unresponsive and may return later (e.g., “Sometimes a PR
leads to a discussion that reveals significant further development is
needed, and not yet done.” [SI11]). Mistakenly closing pull re-
quests can hurt contributors’ feelings and make them demo-
tivated to provide additional updates. Therefore, integrators
usually add special labels (e.g., “stale” and “needs feedback”)
or used the “@” mentions [38] to first remind contributors
of their inactive pull requests. Only if integrators are quite
sure that the contributor is no longer working on the pull
request can they safely close it.
I4 Delayed landing of inter-dependent pull requests. Pull

requests submitted by different developers might have di-
rect or indirect relationships due to the technical depen-
dency between modules or projects [44]. Consequently, the
landing of a pull request might depend on the successful
merging of another pull request. If a pull request is aban-
doned, the progress of the pull request that depends on it is
affected (e.g., “Perhaps I’ll prepare a PR for that, since it seems
#33036 was abandoned” [D76]).
I5 Duplicate pull requests. This impact mostly concerns

redundancy with submitting duplicate pull requests [42].
If a pull request is abandoned, the associated issue is left
unresolved and can be encountered by other developers.
Other contributors might create duplicate pull requests from
scratch, which could be avoided if the original pull request
was not abandoned (e.g., “They cause well-meaning contribu-
tors to open up additional PRs” [SI12]).
I6 Disordered milestone. OSS projects might use mile-

stones [23] to track progress on developers’ work. All the
issues and pull requests associated with a milestone are
expected to be completed before a branch for the upcoming
version is released. If a pull request is abandoned, inte-
grators have to remove it from the scheduled plan, and
postpone it in the next release (e.g., “Think we missed the boat
on 1.7 though :/” [D71]).
I7 Bad impression. OSS collaborative development is a

social process where developers form impressions about
others based on a history of activities [13], [46]. Therefore,
in the survey for integrators, we additionally asked the
participants a question about whether they would have a
bad impression of abandoners. 36.7% of them answered
“No”, and one mentioned, “Especially if it’s a community
driven by voluntary efforts, the author typically gave an honest
attempt and abandoned their PR due to lack of time or a slow
response from reviewers”[SI47]. While 10.2% of integrators
answered “Yes” and the others suggested that it depends on
the situations, e.g., i) the frequency at which this happens,
ii) the reason for the abandonment, iii) where the discussion
lead, and iv) what the pull request is about.

RQ2: Pull request abandonment increases the effort in project

management and maintenance. The most frequently mentioned
negative impacts are cluttering the pull request list, wast-
ing review effort and costing additional attention. Other im-
pacts include blocking inter-dependent tasks, causing repeated
patches, and disordering the scheduled milestone. Moreover,
over 63% of integrators suggested that they would have a bad
impression of abandoners directly or indirectly, depending on
the corresponding situation.

4.3 RQ3: How do integrators cope with abandoned pull
requests?
Table 5 lists the strategies project integrators adopted to cope
with abandoned pull requests. All the topics were iden-
tified by manual observation. The table also presents the
frequency of strategies collected from the full-scale survey
with integrators. The remainder of this section analyzes each
of those strategies in detail.

TABLE 5: Strategies used to cope with abandoned pull
requests.

Strategy Votes (%)

S1 Assign a successor to take it over 66.7
S2 Close it to clean pull request list 60.2
S3 Picked up by volunteers spontaneously 42.3
S4 Advertise it to the community 37.2
S5 Choose the duplicate as an alternative 23.1
S6 Merge as it is and iterate over it 12.8

S1 Assign a successor to take it over. Even if a pull
request has been abandoned by its submitter, the problem
it attempted to solve might still exist. In addition, if a pull
request was not rejected at the beginning but was instead
requested for improvement, this means that the pull request
had a certain value and integrators were inclined to merge it.
Therefore, we can notice that 66.7% of integrators assigned
successors to take over abandoned pull requests. We took a
closer look and asked integrators about their ways of assign-
ing successors. Most integrators completed the abandoned
pull requests themselves (e.g., “We adopt the pull request and
make the requested changes ourselves,” [SI74]), especially when
the feature/bugfix was urgent or critical. Integrators also
appointed (i.e., using “@” mentions) a successor from the
reviewers or developers whose ownership or expertise was
related to the pull request (e.g., “Maybe @[developer] can pick
this up?” [D72]). Abandoned pull requests could be dis-
cussed in an offline internal meeting and certain developers
were assigned to own them. A few integrators reported that
originators already entrusted another developer to continue
the pull request; therefore, integrators did not need to assign
another successor.
S2 Close it to clean pull request list. 60.2% of respondents

said that they had to close the abandoned pull requests
to keep the pull request list clean. In our observation, we
found that integrators usually closed them in a friendly
way and allowed the original authors to reopen the pull
requests as they wanted (e.g., “There was no update for a
long while, closing this therefore. @[author] please just reopen if
you want to continue working on it” [D79]). A few integrators
also reported that bots [72] were used to automatically close

10

inactive pull requests according to predefined rules(e.g.,
“Our stale bot closed it” [SI68]).
S3 Picked up by volunteers spontaneously. Integrators

mentioned that some contributors spontaneously picked up
abandoned pull requests. To better understand contribu-
tors’ willingness, in the full-scale survey for contributors,
we asked the participants if they want to pick up pull
requests abandoned by others. The responses are shown in
Figure 4. Interestingly, only 7.1% of contributors answered
“No”; most of them are willing to pick up abandoned pull
requests. Among the respondents who expressed willing-
ness, 8.3% of contributors answered “Yes”, while the others
suggested that willingness depends on circumstances, such
as issue importance and time investment. This finding might
also explain why few integrators thought pull request aban-
donment did not produce serious problems (e.g., “It’s not
great, but it’s not THAT big of a problem” [SI77]).

7.1% 8.3%84.6%

Would you like to pick
up the pull requests

abandoned by others?

Response No Conditionally Yes

52.1%

48.9%

46.5%

41.8%

whether it is important or valuable
whether I am interested in it

whether I am familiar with it
whether it is a significant time investment

whether I need it 39.9%

Fig. 4: Contributors’ willingness.

S4 Advertise it to the community. If an abandoned pull
request is not important enough for integrators to invest
their time in finishing it by themselves or seeking a partic-
ular successor, they advertise it and expect a volunteer to
pick it up. We examined advertising behaviors and found
two common ways integrators used to advertise abandoned
pull requests. The first approach is leaving an advertising
comment, i.e., integrators leave a comment on the tracking
page of the abandoned pull request or that of the associated
issue, stating that everyone is welcome to pick up the pull
request (e.g., “That’s unfortunate. This was a good change, just
needed to make sure the details were correct. Hopefully someone
will pick this up again” [D73]). Another approach is adding a
special label, i.e., integrators add special labels [35] (e.g., “help
wanted”) to mark the abandoned pull requests.
S5 Choose the duplicate as an alternative. It is possible that
the same issue is encountered by different developers who
might unintentionally submit duplicate pull requests [42],
[79]. If one contributor is unresponsive to integrators’ com-
ments, integrators can resort to the duplicate pull request,
if any (e.g., “Closing due to inactivity and because similar
improvements were made to this test in another PR that has
landed” [D82]).
S6 Merge as it is and iterate over it. In some cases,

integrators preferred to merge an abandoned pull request
as it was and iterate over it (e.g., “@[integrator] can we merge
this as is, and open another issue with the other test?” [D78]).
Generally, this kind of pull request passed all the tests and
did not contain any serious bugs. The problem was usually
that it only solved part of the real issue and more work was
needed. Therefore, merging such pull requests would not
break the runnable state of the codebase.

RQ3: Integrators take different actions to deal with abandoned
pull requests, among which assigning successors to take them
over and closing them are the most common strategies. Integra-
tors also advertised them to the community, merged them with
additional amending, and chose the duplicates. Additionally,
some abandoned pull requests were spontaneously picked up
by volunteer contributors.

5 DISCUSSION

Based on our findings, we provide additional discussion
and propose actionable suggestions for OSS practitioners
and tool builders.

5.1 Main findings

5.1.1 Playing hooky vs. dropping out

We contrasted our findings about pull request abandon-
ment (regarded as playing hooky) with earlier findings about
project abandonment (regarded as dropping out). The first
observation we can make is that the reasons that result in
pull request abandonment overlap with the reasons that
lead developers to quit a project. For example, lack of
time, the second most common reason for pull request
abandonment (R1 Lack of time), was generally the most
cited reason when developers described why they left a
project [33], [41], [47]. Other overlapping reasons include
reception issues [33], [41], [66], technical hurdles [41], [47],
and lack of interest [33], [47]. The overlap of reasons may
be an indication that occasional pull request abandonment
might be a good prediction of permanent disengagement.
Given this implication, project integrators can make more
informed decisions with respect to team management. If the
abandoner is a newcomer, integrators can concentrate their
time and effort on offering active support for others who
are more likely to remain in the project since integrators’
time has already been scarce [25]. If the abandoner is a well-
established developer, integrators should be cautious that
they are going to lose the developer. They need to take
actions to prevent the developer’s disengagement, given
the fact that turnover of well-established developers would
result in significant loss of knowledge and productivity [20],
[36].

Despite the overlapping reasons, some reasons leading
developers to drop out are not present in the taxonomy of
reasons for pull request abandonment. These reasons are
mainly related to the developer (e.g., changing to a new job
that does not support OSS [47]) or the project (e.g., change
of governance model [33]). One possible explanation is that
although a developer cannot submit more pull requests to
a project due to personal or project-related reasons, s/he
would finish the tasks at hand before dropout. Otherwise,
the abandoned pull request might hurt the developer’s
reputation [37], [75], since even though a developer leaves a
project, the developer’s behaviors in the project have been
tracked by GitHub and are publicly visible to any GitHub
user [18], [46]. Future research is necessary to validate this
assumption and examine developers’ perception of pull
request abandonment from contributors’ perspective.

11

We also observed that several reasons for pull request
abandonment were not found to have ever led develop-
ers to discontinue contribution. In general, these reasons
were mainly related to the pull request per se (e.g., R1
inadequate community demand) or the review process (e.g.,
R8 integrators do not reach a consensus). On the one hand,
we assume that the micro-level experience concerning one
particular pull request does not necessarily impact devel-
opers’ macro-level willingness to remain in a project. Since
many developers contributed to a project to scratch their
personal itches [52], if developers who ever abandoned pull
requests encounter new issues in the same project, they
might continue to submit pull requests to resolve the issues.
On the other hand, we speculate that developers might leave
a project due to the problems experienced from several
individual contributions. For example, a developer might
lose interest in OSS and leave a project, after submitting
several pull requests that did not receive adequate favor
from the community. When the developer was asked for
her/his disengagement from the project, s/he, however,
might describe the reason from a broad social perspective
(i.e., lost interest in OSS) instead of a specific technical
perspective (i.e., inadequate community demand for the pull
request). The extent to which pull request abandonment
affects developers’ willingness to contribute is a topic that
deserves further investigation.

5.1.2 Responsiveness
Lack of responsiveness from integrators is found to be the
main reason for pull request abandonment (R1 Lack of answer
from integrators;R4 Not treated seriously by integrators). As one of
our survey respondents suggested “I think there is a golden
window when a volunteer and owner are willing to work on a
feature together. If there is too sparse of a community or either take
too long to respond then likely they have both moved on to other
things and don’t even remember what the pr was” [SC182]. One
of the main reasons for integrators’ unresponsiveness is that
they are overwhelmed by a huge number of tasks [25], such
as answering questions, discussing issues, and reviewing
pull requests. However, the outcomes and effects of inte-
grators’ delay on different tasks might be different. Since
the time and energy of integrators is limited (i.e., response
latency is sometimes inevitable), an effective strategy or
mechanism for integrators should be considered to balance
their workload and schedule different kinds of tasks using
different priorities.

Another possible factor that affects integrators’ respon-
siveness is the complex processes projects use for quality as-
surance. The bureaucracy [65] and overly long CI build [31]
in code review might hinder a pull request from being
processed as quickly and smoothly as possible. Considering
the nature of OSS, integrators of projects with high formality
should simplify the participation process in the project and
gain a tradeoff between formalization and smoothness of
the process.

Furthermore, integrators’ responsiveness might be af-
fected by the incoordination among contributors and inte-
grators. For example, OSS developers who are geograph-
ically distributed across different time zones [27] tend to
face the problem of work-hour asynchronicity. The stretched
communication delay [76] might make them seem slow and

inattentive in responding to others. The effect of timezone
dispersion on coordination efficiency deserves further anal-
ysis.

5.1.3 Responsibility
To get their pull requests merged, contributors are expected
to follow projects’ standards. Nevertheless, we have found
that contributors do not always take responsibility for fixing
up their pull requests to suit integrators’ taste (R10 It requires
more effort than anticipated;R12 Tedious process of updating the pull
request), especially in maintaining the adherence to coding
styles and project conventions. This finding aligns with
prior studies which found that a part of pull requests were
closed due to format issues and incompleteness [24], [83].

Contributors are also expected to clearly state their aban-
donment decision in a timely manner. Otherwise, it will cost
integrators additional effort to keep track of pull requests
and keeping the pull request list from growing too long (I1
Cluttered the pull request list; I3 Additional attention for more careful
close). However, in the full-scale survey with contributors,
when we asked the participants to tell us their actions when
they were unable to finish their pull requests, more than
65% of them said they just left the pull requests. Mean-
while, a number of contributors vanished because they felt
ignored by integrators (R4 Not treated seriously by integrators).
Specifically, our manual observation found several cases in
which integrators’ unmindful feedback (e.g., “Maybe I read
the code wrong. Just be sure to add a test”) drove the contributor
away. It might be unreasonable to expect contributors to
behave cooperatively when they have unpleasant feelings.
Thus, it is very important for OSS communities to mitigate
unintentional conflicts and improve the sense of mutual re-
sponsibility between external contributors and integrators.

5.1.4 Handover
Given the fact that integrators used various ways to make
abandoned pull requests handed over to other developers
(S1 Assign a successor to take it over; S4 Advertise it to the commu-
nity), and sometimes they even accepted an ‘imperfect’ patch
followed by additional amending work (S6 Merge as it is and
iterate over it), integrators tried to accept each pull request
that could be merged, if possible. However, more than 60%
of integrators also said that they had to close the abandoned
pull requests to clean the pull request list (S2 Close it to clean
pull request list). This highlights the need for and feasibility
of establishing a practical handover mechanism since most
contributors reported that they were willing to pick up
pull requests abandoned by others (S3 Picked up by volunteers
spontaneously). Such a mechanism can efficiently facilitate
the completion of abandoned pull requests if they can be
properly recommended to the potential successors.

Furthermore, picking up someone else’s work might be
not easy enough. Even if the original authors cannot con-
tinue for various reasons, their knowledge and experience
with the the abandoned pull requests can still benefit the
follow-up pull requests submitted by the successors. In the
full-scale survey with contributors, we asked originators
about what kind of help they would like to offer. As one
originator said, “I am open to being as involved or out of it as
needed/helpful” [SC527]. We found that most originators were
willing to provide further assistance by explaining their

12

ideas more clearly or reviewing the follow-up pull requests
(e.g., “at least I believe i would always review the new changes”
[SC446]). This indicates that integrators can still invite the
originators to pay attention to the follow-up pull requests.

5.2 Suggestions for OSS practitioners
We propose a set of suggestions that can help both OSS
project integrators and contributors better collaborate in the
pull request mechanism.
Progress awareness. Even if integrators are too busy to
review each pull request in a timely manner, it is helpful
to leave a welcome message and manually or rely on a
bot [72] to provide an estimated time for review. When the
estimated waiting time has exceeded (or is approaching),
the bot can comfort the contributors and remind integrators
to pay attention to the pull request in the meantime. This
can make clear integrators’ status and contributors will not
mistakenly feel ignored by integrators (R4 Not treated seriously
by integrators).
Maximizing automation. Integrators should introduce as
much automation support as they can in quality assurance
to reduce their own effort and that of contributors. For
example, projects that do not provide automatic tools for
convention assurance can establish their own checking spec-
ifications, which can be used by tools like CheckStyle [1]
to locally and automatically check code standards before
patch submission. This helps integrators avoid requesting
cosmetic and nitpicking changes and frees up the time of
casual contributors who might have limited patience to read
the standards (R2 Lack of time; R12 Tedious process of updating
the pull request).
Conspicuous policy. Integrators should establish a policy
on their treatments of contributors’ undesired activities.
For instance, they can specify the inactive period until
a reminder is sent and the inactive period until a pull
request is closed. Projects that already have such a policy
should notify contributors of the policy in a timely manner,
e.g., automatically reminding contributors at pull request
submission. With a predefined policy and timely reminder,
contributors are less likely to complain or feel hurt by
integrators’ treatments; thus, they can collaborate in a less
stressful way (I3 Additional attention for more careful close).
Controlled discussion. Integrators can set the maximum
time needed to reach consensus on the change direction.
If a discussion has lasted for a long period that exceeds the
threshold, a voting process involving interested stakehold-
ers should be triggered to end the discussion to keep it from
bikeshedding [50]. This might help to avoid abandonment
caused by R8 Integrators do not reach a consensus.
Clear declaration. On the one hand, contributors should
clearly tell others their abandonment decisions so that inte-
grators can stop expecting a response from them (I1 Clutter
the pull request list; I3 Additional attention on more careful close).
If they intend to leave temporarily, it is better to state it and
give an estimated period of inactivity. On the other hand,
integrators should clearly mark abandoned pull requests,
e.g., using special labels, and make them easy for candidate
successors to find (S3 Picked up by volunteers spontaneously).
Nit-picking when landing. In some projects, the integrators
merge pull requests locally using git commands instead of

using the merge button on GitHub. For these projects, the
additional small changes (e.g., typos and squashing) that
need to be made before a pull request gets merged can
be made by integrators when landing the commits. This
seems more efficient than requesting and waiting for the
pull request author to perform such trivial changes, which
might also help to avoid stalling pull requests (R12 Tedious
process of updating the pull request).
Review guidelines. Projects that do not provide guidelines
for new collaborators should at least list some of the best
review practices. For example, they can suggest what kind
of review comments are considered helpful and insightful
(R7 Lack of knowledge about the requested changes), and the way
in which a large change or multiple changes should be
requested (R10 It requires more effort than anticipated).
Visible communication channels. Some projects have multi-
ple channels for communication, e.g., pull request comment,
mailing list [28], IRC [60], and Slack [3]. Communication
channels outside GitHub should be publicly and apparently
described on the project homepage. In particular, contribu-
tors should be informed which channel should be used to
get quick replies when they have not heard anything for a
long time (R1 Lack of answer from integrators).

5.3 Implications for tool design

Our findings suggest several implications for tool builders
to create new mechanisms and tools and provide developers
with more automated and intelligent support.
Enhanced prioritization. A prior study [69] proposed a
system to help integrators prioritize their work. The features
used include the size of change, pull request age, and
contributor track record. We argue that developers’ time
zones and the elapsed time waiting for integrators’ response
in a discussion thread should be applied as prioritization
criteria. The waiting time can be calculated from the time
when contributors push new commits or post a new com-
ment. This helps integrators focus on at-risk pull requests
in a timely manner (R1 Lack of answer from integrators; R4 Not
treated seriously by integrators).
Motivating badges. To better motivate contributors who
have been asked to carry out complicated change requests,
integrators can be allowed to assign them a special badge
[61] upon pull request acceptance indicating they have ever
worked on tough tasks (R6 Lack of interest; R10 It requires
more effort than anticipated). This may act as an incentive for
contributors to continue in order to build their reputation
and gain peer recognition [46], [61].
Online update. Platforms can support the updating of pull
requests online. For instance, whenever new codes are
merged/pushed and no merge conflict is detected, a pull
request can be automatically rebased onto the latest base
branch. Moreover, developers can be allowed to edit pull
requests online. This makes it more cost effective to carry
out minor changes that do not require significant effort, e.g.,
fixing a typo (R12 Tedious process of updating the pull request).
Premium notification. Currently, GitHub users receive noti-
fication emails triggered by updates on the conversations
in which they are participating. The notifications can be
expedited by enabling the ping tool to send specific kinds of

13

reminders. For example, contributors can send a “Request-
confirm” reminder to the corresponding integrator, who is
expected to quickly confirm the change detail. The reminder
label is added to the head of the email subject, which can
distinguish the urgent messages from notification floods
and therefore increase their chance of being noticed by
integrators (R1 Lack of answer from integrators).
Successor recommendation. A tool can automatically rec-
ommend a list of candidate successors for abandoned pull
requests (S1 Assign a successor to take it over; S3 Picked up by
volunteers spontaneously; S4 Advertise it to the community). The
candidates can be grouped together in a visualization panel
displaying their profiles. Invitation messages would be au-
tomatically sent to the candidates who have been selected
by integrators. Moreover, if integrators label the needed
changes as trivial, the tool can recommend newcomers to
try them.

6 THREATS TO VALIDITY

In this section, we discuss our potential threats to validity
as follows.
Construct validity. The first threat is related to the risk
of survey respondents misunderstanding the survey ques-
tions. To mitigate this threat, we discussed the questions
with experienced researchers and made necessary clarifi-
cations of the wording of questions and answers. We also
conducted the survey in two rounds; the first pilot survey
results were used to improve the design of the final full-
scale survey. Second, as with any survey method, to control
for sampling bias can be challenging. One threat is selec-
tion bias (i.e., developers who do not answer the survey
may hold different opinions). To encourage responses, we
designed our surveys to be as short as possible and made
the questions easy to answer, adhering to survey design
recommendations [26], [53]. Another threat is that some of
the respondents in the full-scale survey with contributors
might have no experience with pull request abandonment
and might provide speculative answers. To mitigate this
threat, we targeted developers who had pull requests closed
recently; they had higher chances of having ever abandoned
pull requests than a random sample of GitHub developers.
Moreover, at the introduction of the survey questionnaires,
we reminded survey participants to answer the questions
according to their real experience.
Internal validity. The first threat concerns the construc-
tion of the taxonomies denoting the reasons, impacts, and
coping strategies for pull request abandonment. We may
have drawn wrong conclusions in card sorting because the
coders may have had preconceptions in interpreting text. To
minimize subjectivity and personal bias, the sorting tasks
were performed by three of the authors together. Second,
as with all qualitative studies, a threat exists concerning
the completeness of our taxonomies. We may have missed
some abandoned pull requests in the manual observation.
To mitigate this threat, we covered the most common cases
and included as many keywords as possible for automatic
identification. To further minimize the risk of an incomplete
taxonomy, we coded all the remaining cards when satu-
ration was reached in card sorting. We also performed a
second pass over all cards to ensure that we did not miss any

important information, and invited all the authors to discuss
the taxonomies. Additionally, we validated and augmented
the taxonomy developed in manual observation with survey
responses.
External validity. Threats to external validity are related
to the generalizability of our conclusions. Our study was
conducted on a set of GitHub projects. Although we have
used random sampling and the studied projects are with
high diversity in terms of programming language and ap-
plication domain, those projects may not be representative
of all OSS projects. Thus, our results may not generalize
beyond the OSS projects involved in this study. Additional
replication studies on more projects and developers inside
and outside of GitHub are needed to generalize our results.

7 CONCLUSION

For OSS projects to survive and grow, it is important that
project integrators and external contributors work closely to
ensure that submitted pull requests are accepted. However,
asking contributors to address integrators’ change requests
does not always get a response. Through manual observa-
tion and surveys with OSS developers, we uncovered 12
main reasons for pull request abandonment, among which
the top-ranked ones are lack of responsiveness from integra-
tors and lack of time from contributors. We also identified
the specific impacts of pull request abandonment, with the
most frequently cited ones being cluttering pull request
list, wasting review effort and costing additional attention.
Finally, we revealed the common coping strategies used by
integrators, such as assigning successors and advertising to
the community.

Our findings have several implications for OSS practi-
tioners and researchers. First, mechanisms and tools can
be designed to prevent avoidable abandonment, mitigate
undesirable impacts of abandonment, and recommend ap-
propriate successors to take over abandoned pull requests.
Second, researchers can study further on pull request aban-
donment from the integrators’ side, i.e., why project inte-
grators ignore pull requests without leaving a comment.
Last but not least, a useful complement to this study would
be to investigate how project characteristics (e.g., project
popularity and formality) affect pull request abandonment
in a comprehensive way.

ACKNOWLEDGMENTS

This work was supported by National Grand R&D Plan
(Grant No. 2020AAA0103504) and National Natural Science
Foundation of China (Grant No. 61702534).

REFERENCES

[1] About checkstyle. https://github.com/checkstyle/checkstyle.
Accessed: 2020-07-06.

[2] About github api. http://developer.github.com/v3/. Accessed:
2020-07-06.

[3] About slack. https://www.slack.com/. Accessed: 2020-12-06.
[4] About surveymonkey. https://www.surveymonkey.com/mp/

aboutus. Accessed: 2020-07-06.
[5] The list of 20 less-popular projects. https://github.com/whystar/

TSE2021-AbandonedPR/blob/master/resource/observation/20
less popular projects.md. Accessed: 2021-01-19.

[6] Surveys. https://github.com/whystar/TSE2021-AbandonedPR/
tree/master/resource/surveys. Accessed: 2021-01-19.

14

[7] Alberto Bacchelli and Christian Bird. Expectations, outcomes,
and challenges of modern code review. In Proceedings of the
35th International Conference on Software Engineering, pages 712–721.
IEEE Press, 2013.

[8] Andrew Begel and Thomas Zimmermann. Analyze this! 145
questions for data scientists in software engineering. In Proceedings
of the 36th International Conference on Software Engineering, pages
12–23, 2014.

[9] Andrea Bonaccorsi and Cristina Rossi. Comparing motivations of
individual programmers and firms to take part in the open source
movement: From community to business. Knowledge, Technology &
Policy, 18(4):40–64, 2006.

[10] Hudson Borges, Andre Hora, and Marco Tulio Valente. Under-
standing the factors that impact the popularity of github reposi-
tories. In Proceedings of the 2016 IEEE International Conference on
Software Maintenance and Evolution, pages 334–344. IEEE, 2016.

[11] Jelmer P Borst, Niels A Taatgen, and Hedderik van Rijn. What
makes interruptions disruptive?: A process-model account of the
effects of the problem state bottleneck on task interruption and
resumption. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pages 2971–2980. ACM, 2015.

[12] Amiangshu Bosu, Jeffrey C Carver, Christian Bird, Jonathan Or-
beck, and Christopher Chockley. Process aspects and social dy-
namics of contemporary code review: Insights from open source
development and industrial practice at microsoft. IEEE Transac-
tions on Software Engineering, 43(1):56–75, 2016.

[13] Amiangshu Bosu, Jeffrey C. Carver, Christian Bird, Jonathan
Orbeck, and Christopher Chockley. Process aspects and social
dynamics of contemporary code review: Insights from open source
development and industrial practice at microsoft. IEEE Transac-
tions on Software Engineering, 43(1):56–75, 2017.

[14] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen. Cod-
ing in-depth semistructured interviews: Problems of unitization
and intercoder reliability and agreement. Sociological Methods &
Research, 42(3):294–320, 2013.

[15] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. Who is going to mentor newcomers in
open source projects? In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
pages 1–11, 2012.

[16] Kevin Crowston and James Howison. The social structure of free
and open source software development. First Monday, 10(2), 2005.

[17] Kevin Crowston, Kangning Wei, Qing Li, and James Howison.
Core and periphery in free/libre and open source software team
communications. In Proceedings of the 39th Annual Hawaii Inter-
national Conference on System Sciences (HICSS’06), volume 6, pages
118a–118a. IEEE, 2006.

[18] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb.
Social coding in github: transparency and collaboration in an open
software repository. In Proceedings of the ACM 2012 conference on
computer supported cooperative work, pages 1277–1286, 2012.

[19] Fabian Fagerholm, Alejandro S Guinea, Jürgen Münch, and Jay
Borenstein. The role of mentoring and project characteristics
for onboarding in open source software projects. In Proceedings
of the 8th ACM/IEEE international symposium on empirical software
engineering and measurement, pages 1–10, 2014.

[20] Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C Murphy,
and Jean-Rémy Falleri. Impact of developer turnover on quality in
open-source software. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, pages 829–841, 2015.

[21] Jonas Gamalielsson and Bjoern Lundell. Sustainability of open
source software communities beyond a fork: How and why has
the libreoffice project evolved? Journal of Systems & Software,
89(MAR.):128–145, 2014.

[22] Georgios Gousios. The ghtorent dataset and tool suite. In Pro-
ceedings of the 10th working conference on mining software repositories,
pages 233–236. IEEE Press, 2013.

[23] Georgios Gousios, Martin Pinzger, and Arie Van Deursen. An
exploratory study of the pull-based software development model.
In Proceedings of the 36th International Conference on Software Engi-
neering, pages 345–355, 2014.

[24] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli.
Work practices and challenges in pull-based development: the
contributor’s perspective. In Proceedings of the 38th International
Conference on Software Engineering, pages 285–296. IEEE, 2016.

[25] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and
Arie Van Deursen. Work practices and challenges in pull-based

development: the integrator’s perspective. In Proceedings of the
37th International Conference on Software Engineering, pages 358–368.
IEEE, 2015.

[26] Robert M Groves, Floyd J Fowler Jr, Mick P Couper, James M
Lepkowski, Eleanor Singer, and Roger Tourangeau. Survey method-
ology, volume 561. John Wiley & Sons, 2011.

[27] Dorina C Gumm. Distribution dimensions in software develop-
ment projects: A taxonomy. IEEE software, 23(5):45–51, 2006.

[28] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger,
and Arie Van Deursen. Communication in open source software
development mailing lists. In Proceedings of 2013 10th IEEE Working
Conference on Mining Software Repositories, 2013.

[29] Christoph Hannebauer, Matthias Book, and Volker Gruhn. An
exploratory study of contribution barriers experienced by new-
comers to open source software projects. In Proceedings of the
1st International Workshop on CrowdSourcing in Software Engineering,
pages 11–14, 2014.

[30] Alexander Hars and Shaosong Qu. Working for free? motivations
for participating in open-source projects. International journal of
electronic commerce, 6(3):25–39, 2002.

[31] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Mari-
nov, and Danny Dig. Trade-offs in continuous integration: assur-
ance, security, and flexibility. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pages 197–207, 2017.

[32] Wenjian Huang, Tun Lu, Haiyi Zhu, Guo Li, and Ning Gu.
Effectiveness of conflict management strategies in peer review
process of online collaboration projects. In Proceedings of the 19th
ACM Conference on Computer-Supported Cooperative Work & Social
Computing, pages 717–728. ACM, 2016.

[33] Giuseppe Iaffaldano, Igor Steinmacher, Fabio Calefato, Marco
Gerosa, and Filippo Lanubile. Why do developers take breaks
from contributing to oss projects?: a preliminary analysis. In
Proceedings of the 2nd International Workshop on Software Health,
pages 9–16. IEEE Press, 2019.

[34] Rahul N Iyer, S Alex Yun, Meiyappan Nagappan, and Jesse Hoey.
Effects of personality traits on pull request acceptance. IEEE
Transactions on Software Engineering, 2019.

[35] Javier Luis Cánovas Izquierdo, Valerio Cosentino, Belén Rolandi,
Alexandre Bergel, and Jordi Cabot. Gila: Github label analyzer. In
Proceedings of the 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pages 479–483. IEEE, 2015.

[36] Daniel Izquierdo-Cortazar, Gregorio Robles, Felipe Ortega, and
Jesus M Gonzalez-Barahona. Using software archaeology to
measure knowledge loss in software projects due to developer
turnover. In Proceedings of the 2009 42nd Hawaii International
Conference on System Sciences, pages 1–10. IEEE, 2009.

[37] Corey Jergensen, Anita Sarma, and Patrick Wagstrom. The onion
patch: migration in open source ecosystems. In Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, pages 70–80. ACM, 2011.

[38] David Kavaler, Premkumar Devanbu, and Vladimir Filkov. Whom
are you going to call? determinants of @-mentions in github
discussions. Empirical Software Engineering, (1):1–29.

[39] Oleksii Kononenko, Tresa Rose, Olga Baysal, Michael Godfrey,
Dennis Theisen, and Bart De Water. Studying pull request merges:
a case study of shopify’s active merchant. In Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice, pages 124–133, 2018.

[40] Karim R Lakhani and Robert G Wolf. Why hackers do what
they do: Understanding motivation and effort in free/open source
software projects. 2003.

[41] Amanda Lee, Jeffrey C Carver, and Amiangshu Bosu. Under-
standing the impressions, motivations, and barriers of one time
code contributors to floss projects: a survey. In Proceedings of the
39th International Conference on Software Engineering, pages 187–197.
IEEE Press, 2017.

[42] Zhixing Li, Yue Yu, Minghui Zhou, Tao Wang, Gang Yin, Long
Lan, and Huaimin Wang. Redundancy, context, and preference:
An empirical study of duplicate pull requests in oss projects. IEEE
Transactions on Software Engineering, 2020.

[43] Bin Lin, Gregorio Robles, and Alexander Serebrenik. Developer
turnover in global, industrial open source projects: Insights from
applying survival analysis. In Proceedings of the 2017 IEEE 12th
International Conference on Global Software Engineering (ICGSE),
pages 66–75. IEEE, 2017.

[44] Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yuming Zhou, and
Baowen Xu. How do developers fix cross-project correlated bugs?

15

a case study on the github scientific python ecosystem. In Pro-
ceedings of the 39th International Conference on Software Engineering,
pages 381–392, 2017.

[45] Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera
Jaspan, Caitlin Sadowski, Lori Pollock, and James Clause. An
empirical study of practitioners’ perspectives on green software
engineering. In Proceedings of the 2016 IEEE/ACM 38th International
Conference on Software Engineering, pages 237–248. IEEE, 2016.

[46] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. Impression
formation in online peer production: activity traces and personal
profiles in github. In Proceedings of the 2013 Conference on Computer
Supported Cooperative Work, pages 117–128. ACM, 2013.

[47] Courtney Miller, David Gray Widder, Christian Kästner, and
Bogdan Vasilescu. Why do people give up flossing? a study of
contributor disengagement in open source. In Proceedings of the
2019 International Conference on Open Source Systems, pages 116–
129. Springer, 2019.

[48] Cassandra Overney, Jens Meinicke, Christian Kästner, and Bogdan
Vasilescu. How to not get rich: An empirical study of donations
in open source. In Proceedings of the 2020 International Conference on
Software Engineering, ICSE. ACM, 2020.

[49] Fabio Palomba, Pasquale Salza, Adelina Ciurumelea, Sebastiano
Panichella, Harald Gall, Filomena Ferrucci, and Andrea De Lucia.
Recommending and localizing change requests for mobile apps
based on user reviews. In Proceedings of the 2017 IEEE/ACM
39th International Conference on Software Engineering, pages 106–117.
IEEE, 2017.

[50] Cyril Northcote Parkinson. Parkinson’s law: The pursuit of progress.
Readers Union [in association with] John Murray, 1959.

[51] Gustavo Pinto, Luiz Felipe Dias, and Igor Steinmacher. Who gets
a patch accepted first? comparing the contributions of employees
and volunteers. In Proceedings of 2018 IEEE/ACM 11th International
Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), pages 110–113. IEEE, 2018.

[52] Gustavo Pinto, Igor Steinmacher, and Marco Aurélio Gerosa. More
common than you think: An in-depth study of casual contributors.
In Proceedings of the 23rd International Conference on Software Anal-
ysis, Evolution, and Reengineering, volume 1, pages 112–123. IEEE,
2016.

[53] Teade Punter, Marcus Ciolkowski, Bernd Freimut, and Isabel
John. Conducting on-line surveys in software engineering. In
Proceedings of the 2003 International Symposium on Empirical Software
Engineering, pages 80–88. IEEE, 2003.

[54] Huilian Sophie Qiu, Alexander Nolte, Anita Brown, Alexander
Serebrenik, and Bogdan Vasilescu. Going farther together: The
impact of social capital on sustained participation in open source.
In Proceedings of the 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 688–699. IEEE, 2019.

[55] Ayushi Rastogi. Do biases related to geographical location in-
fluence work-related decisions in github? In Proceedings of 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C), pages 665–667. IEEE, 2016.

[56] Ayushi Rastogi, Nachiappan Nagappan, Georgios Gousios, and
André van der Hoek. Relationship between geographical location
and evaluation of developer contributions in github. In Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, pages 1–8, 2018.

[57] Eric Raymond. The cathedral and the bazaar. Knowledge Technology
& Policy, 12(3):23–49, 1999.

[58] Jeffrey A Roberts, Il-Horn Hann, and Sandra A Slaughter. Under-
standing the motivations, participation, and performance of open
source software developers: A longitudinal study of the apache
projects. Management science, 52(7):984–999, 2006.

[59] Andreas Schilling, Sven Laumer, and Tim Weitzel. Who will
remain? an evaluation of actual person-job and person-team fit
to predict developer retention in floss projects. In Proceedings of the
2012 45th Hawaii International Conference on System Sciences, pages
3446–3455. IEEE, 2012.

[60] Emad Shihab, Zhen Ming Jiang, and Ahmed E Hassan. Studying
the use of developer irc meetings in open source projects. In 2009
IEEE International Conference on Software Maintenance, pages 147–
156. IEEE, 2009.

[61] Leif Singer, Fernando Figueira Filho, Brendan Cleary, Christoph
Treude, Margaret-Anne Storey, and Kurt Schneider. Mutual
assessment in the social programmer ecosystem: An empirical
investigation of developer profile aggregators. In Proceedings of

the 2013 conference on Computer supported cooperative work, pages
103–116, 2013.

[62] Donna Spencer. Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[63] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David
Redmiles. Social barriers faced by newcomers placing their first
contribution in open source software projects. In Proceedings of
the 18th ACM conference on Computer Supported Cooperative Work &
Social Computing, pages 1379–1392. ACM, 2015.

[64] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and
Marco Aurélio Gerosa. Overcoming open source project entry
barriers with a portal for newcomers. In Proceedings of the 38th
International Conference on Software Engineering, pages 273–284.
ACM, 2016.

[65] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and
Marco Aurélio Gerosa. Almost there: A study on quasi-
contributors in open-source software projects. In Proceedings of
the 40th International Conference on Software Engineering, pages 256–
266. IEEE, 2018.

[66] Igor Steinmacher, Igor Wiese, Ana Paula Chaves, and
Marco Aurélio Gerosa. Why do newcomers abandon open source
software projects? In Proceedings of the 6th International Workshop on
Cooperative and Human Aspects of Software Engineering, pages 25–32.
IEEE, 2013.

[67] Josh Terrell, Andrew Kofink, Justin Middleton, Clarissa Rainear,
Emerson Murphy-Hill, Chris Parnin, and Jon Stallings. Gender
differences and bias in open source: Pull request acceptance of
women versus men. PeerJ Computer Science, 3:e111, 2017.

[68] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social
and technical factors for evaluating contribution in github. In Pro-
ceedings of the 36th International Conference on Software Engineering,
pages 356–366. ACM, 2014.

[69] Erik Van Der Veen, Georgios Gousios, and Andy Zaidman. Au-
tomatically prioritizing pull requests. In Proceedings of the 12th
Working Conference on Mining Software Repositories, pages 357–361.
IEEE, 2015.

[70] Bogdan Vasilescu, Kelly Blincoe, Qi Xuan, Casey Casalnuovo,
Daniela Damian, Premkumar Devanbu, and Vladimir Filkov. The
sky is not the limit: multitasking across github projects. In Pro-
ceedings of the 38th International Conference on Software Engineering,
pages 994–1005. IEEE, 2016.

[71] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu,
and Vladimir Filkov. Quality and productivity outcomes relating
to continuous integration in github. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pages 805–816,
2015.

[72] Mairieli Wessel, Bruno Mendes De Souza, Igor Steinmacher, Igor S
Wiese, Ivanilton Polato, Ana Paula Chaves, and Marco A Gerosa.
The power of bots: Characterizing and understanding bots in oss
projects. Proceedings of the ACM on Human-Computer Interaction,
2(CSCW):1–19, 2018.

[73] Marty J Wolf, Kevin Bowyer, Don Gotterbarn, and Keith Miller.
Open source software: intellectual challenges to the status quo.
ACM SIGCSE Bulletin, 34(1):317–318, 2002.

[74] Vincent Wolff-Marting, Christoph Hannebauer, and Volker Gruhn.
Patterns for tearing down contribution barriers to floss projects.
In Proceedings of the 2013 IEEE 12th International Conference on In-
telligent Software Methodologies, Tools and Techniques (SoMeT), pages
9–14. IEEE, 2013.

[75] Yunwen Ye and Kouichi Kishida. Toward an understanding of the
motivation open source software developers. In Proceedings of the
25th International Conference on Software Engineerin, pages 419–429.
IEEE Computer Society, 2003.

[76] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu,
and Bogdan Vasilescu. Wait for it: Determinants of pull request
evaluation latency on github. In 2015 IEEE/ACM 12th working
conference on mining software repositories, pages 367–371. IEEE, 2015.

[77] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. Reviewer rec-
ommendation for pull-requests in github. Information & Software
Technology, 74(C):204–218, 2016.

[78] Minghui Zhou and Audris Mockus. What make long term con-
tributors: Willingness and opportunity in oss community. In Pro-
ceedings of the 34th International Conference on Software Engineering,
pages 518–528. IEEE Press, 2012.

[79] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. What the
fork: a study of inefficient and efficient forking practices in social
coding. In Proceedings of the 27th ACM Joint Meeting on European

16

Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 350–361. ACM, 2019.

[80] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. Effectiveness of
code contribution: From patch-based to pull-request-based tools.
In Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 871–882. ACM, 2016.

[81] Thomas Zimmermann. Card-sorting: From text to themes. In
Perspectives on Data Science for Software Engineering, pages 137–141.
Elsevier, 2016.

[82] Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-Bach D Le,
Xin Xia, Yang Feng, Zhenyu Chen, and Baowen Xu. Smart contract
development: Challenges and opportunities. IEEE Transactions on
Software Engineering, 2019.

[83] Weiqin Zou, Jifeng Xuan, Xiaoyuan Xie, Zhenyu Chen, and
Baowen Xu. How does code style inconsistency affect pull request
integration? an exploratory study on 117 github projects. Empirical
Software Engineering, 24(6):3871–3903, 2019.

Zhixing Li is a Ph.D. candidate in Software
Engineering at National University of Defense
Technology (NUDT). He received his Master de-
gree in compute science from NUDT in 2017.
His research goals are centered around the
idea of making the open source collaboration
more efficient and effective by investigating the
challenges faced by open source communi-
ties and designing smarter collaboration mech-
anisms and tools.

Yue Yu is an associate professor in the Col-
lege of Computer at National University of De-
fense Technology (NUDT). He received his Ph.D.
degree in Computer Science from NUDT in
2016. He has won Outstanding Ph.D. Thesis
Award from Hunan Province. His research find-
ings have been published on ICSE, FSE, ASE,
TSE, MSR, IST, ICSME, ICDM and ESEM. His
current research interests include software en-
gineering, data mining and computer-supported
cooperative work.

Tao Wang is an associate professor in the
College of Computer at National University of
Defense Technology (NUDT). He received his
Ph.D. degree in Computer Science from NUDT
in 2015. His work interests include open source
software engineering, machine learning, data
mining, and knowledge discovering in open
source software.

Gang Yin is an associate professor in the
College of Computer at National University of
Defense Technology (NUDT). He received his
Ph.D. degree in Computer Science from NUDT
in 2006. He has published more than 60 re-
search papers in international conferences and
journals. His current research interests include
distributed computing, information security, soft-
ware engineering, and machine learning.

ShanShan Li is a professor in the Department
of Computer Science of National University of
Defense Technology (NUDT). She received her
Ph.D. degree from NUDT in 2007. Her main
research areas includes empirical software en-
gineering and intelligent software development.
She has published more than 70 papers on FSE,
ASE, ICSE, ICPC, SANERD, TPDS et al.

Huaimin Wang received his Ph.D. in Com-
puter Science from National University of De-
fense Technology (NUDT) in 1992. He has been
awarded the “Chang Jiang Scholars Program”
professor and the Distinct Young Scholar, etc.
He has published more than 100 research pa-
pers in peer-reviewed international conferences
and journals. His current research interests in-
clude middleware, software agent, and trustwor-
thy computing.

